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Three-dimensional analysis of harmonic generation in high-gain free-electron lasers

Zhirong Huang and Kwang-Je Kim
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439

~Received 8 May 2000!

In a high-gain free-electron laser~FEL! employing a planar undulator, strong bunching at the fundamental
wavelength can drive substantial bunching and power levels at the harmonic frequencies. In this paper we
investigate the three-dimensional evolution of harmonic radiation based on the coupled Maxwell-Klimontovich
equations that take into account nonlinear harmonic interactions. Each harmonic field is a sum of a linear
amplification term and a term driven by nonlinear harmonic interactions. After a certain stage of exponential
growth, the dominant nonlinear term is determined by interactions of the lower nonlinear harmonics and the
fundamental radiation. As a result, the gain length, transverse profile, and temporal structure of the first few
harmonics are eventually governed by those of the fundamental. Transversely coherent third-harmonic radia-
tion power is found to approach 1% of the fundamental power level for current high-gain FEL projects.

PACS number~s!: 41.60.Cr, 42.55.Vc, 42.65.Ky
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I. INTRODUCTION

The ability to generate coherent harmonic radiation is
important aspect of a free-electron laser~FEL!. In a planar
undulator with a strong magnetic field, spontaneous em
sions at the fundamental resonant frequency and its hig
harmonics induce bunching at their respective wavelen
scales, leading to amplified emissions@1#, but the linear am-
plification of the higher harmonics is always smaller than
fundamental. For a fourth-generation light source based o
single-pass, high-gain FEL amplifier, the fundamental is
ways heavily favored because of its advantage in gain len
Even for a subharmonically seeded high-gain harmonic g
eration~HGHG! FEL scheme@2# that employs two undula
tors with the second undulator resonant to one of the h
monics of the first and a dispersion section between th
the lasing still occurs at the fundamental of the second
dulator.

Nevertheless, coherent harmonic emission is gener
when the laser fundamental bunches the electron b
strongly, producing Fourier components at the harmon
For a high-gain FEL, a one-dimensional~1D! model@3# and
a three-dimensional simulation study@4# indicate that signifi-
cant powers of the first few harmonics are generated thro
nonlinear harmonic interactions. In this paper, we prese
3D analysis of harmonic generation in a high-gain F
based on the coupled Maxwell-Klimontovich equation
Starting from the fundamental, we determine the domin
contributions to the first few harmonics and their radiati
characteristics such as gain length, transverse profile,
temporal structure in a high-gain FEL. Since the nonlin
harmonic generation occurs naturally in one long planar
dulator, it exists both for a self-amplified spontaneous em
sion ~SASE! FEL with an initially uniform bunch and for the
second stage of an HGHG FEL using a density-modula
bunch. Thus, such a harmonic generation mechanism ma
utilized to reach shorter radiation wavelengths or to re
some stringent requirements on the electron-beam quality
a fourth-generation light source. Explicit calculations bas
on current high-gain FEL projects show that the power of
transversely coherent third-harmonic radiation can appro
1% of the fundamental power level.
PRE 621063-651X/2000/62~5!/7295~14!/$15.00
n

s-
er
th

e
a

l-
h.
n-

r-
,
-

ed
m

s.

h
a

.
t

nd
r
-
-

d
be
x
or
d
e
ch

This paper is organized as follows. In Sec. II, the coup
Maxwell-Klimontovich equations are employed for the se
consistent treatment of the beam-radiation interaction. Sc
variables and parameters are introduced to simplify the
tation. In Sec. III, we extend the 3D analysis of the line
interaction from the fundamental frequency to its higher h
monics and show that the linear amplification process occ
predominantly around the fundamental frequency. The m
trix formulation of Xie @5# is used in solving the dispersio
relation to determine the transverse guided mode that has
largest growth rate. In Sec. IV, we include nonlinear h
monic interactions into our perturbation analysis and dem
strate that the nonlinear harmonic generation is prima
driven by the radiation field at the fundamental frequen
and can be much stronger than the linear harmonic gen
tion. Generation of the third-harmonic radiation due to th
nonlinear mechanism is studied for both coherent amplifi
tion and self-amplified spontaneous emission in Sec. V. N
merical examples drawn from current high-gain FEL proje
are used in Sec. VI to show that significant third-harmo
power can develop before FEL saturation. A summary
these results and some concluding remarks are given in
concluding section.

II. COUPLED MAXWELL-KLIMONTOVICH EQUATIONS

Consider a planar undulator with a sinusoidal magne
field in the y direction. For an electron beam with avera
energyg0mc2, the transverse wiggling motion is accomp
nied by a longitudinal oscillation around the average lon
tudinal position at twice the transverse frequencycku ~a
figure-eight motion in the electron’s co-moving frame!. Such
a nonsinusoidal trajectory can give rise to harmonic rad
tion. Let us represent the electric field in the form

x̂E
2`

` dn

2
E~n,x,z!eink1~z2ct!, ~1!

where x5(x,y) represents the transverse coordinates,ck1

5(2g0
2cku)/(11K2/2) is the fundamental resonant fre

quency,ku52p/lu , lu is the undulator period length,K is
7295 ©2000 The American Physical Society
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7296 PRE 62ZHIRONG HUANG AND KWANG-JE KIM
the undulator parameter, anduE(n)u is the field amplitude at
frequencynk1c providing thatE(2n)5E* (n). If E is as-
sumed to vary slowly withz, the Maxwell equation under th
paraxial approximation becomes

E
2`

` dn

2
eink1~z2ct!S 2ink1

]

]z
1“'

2 DE~n,x,z!

5
1

e0c2

]

]t
Jx~x,z,t !, ~2!

where“'
2 is the transverse Laplacian,e0 is the permittivity

of free space, and the transverse current density for a b
of Ne electrons is given by

Jx5ecKcos~kuz!(
j 51

Ne 1

g j
d@x2xj~ t !#d@z2zj~ t !#, ~3!

whereg jmc2 and (xj ,zj ) are the energy and the position
the j th electron. Inverting Eq.~2! yields

S ]

]z
1

“'
2

2ink1
DE~n,x,z!

5
1

e0c2 E
2`

` cdt

2inp
e2 ink1~z2ct!

]

]t
Jx~x,z,t !

'2
eK

e0g0
E

2`

` ck1dt

2p
e2 ink1~z2ct! cos~kuz!

3(
j 51

N

d@x2xj~ t !#d@z2zj~ t !#. ~4!

Here we have approximatedg j5g0 in the transverse veloc
ity of the beam~assuming the energy spread is small! and
performed integration by parts over the time variable.

It is convenient to treatz, the distance from the undulato
entrance, as the independent variable, and change the d
dent coordinate fromt to u by u(z)5(ku1k1)z2ck1t*
5(ku1k1)z2ck1t1j sin(2kuz), wherect* denotes the av-
erage electron position andj5K2/(412K2). The right-
hand side of Eq.~4! becomes

2
eK

e0g0
E

2`

` k1du

2p
e2 inu expinkuz1 inj sin~2kuz!

3cos~kuz!(
j 51

Ne

d@x2xj~z!#d@u2u j~z!#, ~5!

whereu j (z) describes the FEL bunching action, andxj (z)
contains both the transverse wiggling motion~in thex plane!
and the betatron oscillation. Since the FEL interaction a
the betatron oscillation occur on a scale much longer than
fast wiggling motion, we average Eq.~5! over the undulator
periodlu with the help of the Bessel function expansion

einj sin~2kuz!5 (
p52`

1`

Jp~nj!ei2pkuz. ~6!

Furthermore, because the transverse wiggling amplitud
normally smaller than the transverse dimension of the e
tron beam, we neglect the wiggling motion in the transve
m

en-

d
e

is
c-
e

current distribution functiond@x2xj (z)# when taking the
wiggling average. Hence, the wiggling averaged Eq.~5! is
nonzero only whenn is close to an odd integerh52(2p
61)5¯25,23,21,1,3,5, . . . , and weobtain for the field
amplitudeE(h1Dnh ,x,z) near thehth harmonic

S ]

]z
1

“'
2

2ihk1
DE~h1Dnh ,x,z!

52
eKh

2e0g0
eiDnhkuzE k1du

2p
e2 inu

3(
j 51

Ne

d~x2xj !d~u2u j !. ~7!

Here we have defined the effective coupling strength of
hth harmonic as

Kh5K~21!~h21!/2@J~h21!/2~hj!2J~h11!/2~hj!#. ~8!

In the forward z direction, the electric field consists of
series of nearly monochromatic waves around the odd
monic frequencieshck1 @1#, with the frequency detuning
Dnh5n2h!1. Retaining the wiggling motion in the trans
verse current distribution functiond@x2xj (z)# would lead to
even harmonic emissions@6#, which normally have lower
power levels than their odd counterparts for a high-gain F
@4#. The generation of even harmonics will be neglected
this paper and will be discussed in a future publication@7#.

The microscopic electron distribution in the phase sp
is given by the Klimontovich distribution function@8#:

F~z,u,h,x,p!5
k1

n0
(
j 51

Ne

d~u2u j !d~h2h j !d~x2xj !

3d~p2pj !, ~9!

where h5(g2g0)/g0 and p5dx/dz are the energy and
transverse momentum variables, respectively, andn0 is the
peak electron volume density. Equation~7! becomes

S ]

]z
1

“'
2

2ihk1
DE~h1Dnh ,x,z!

52khn0eiDnhkuzE du

2p
e2 inuE d2pE dhF, ~10!

wherekh5eKh /(2e0g0).
The evolution of the Klimontovich distribution functionF

is governed by the continuity equation

]F

]z
1 u̇

]F

]u
1ḣ

]F

]h
1 ẋ

]F

]x
1ṗ

]F

]p
50. ~11!

Here the dot meansd/dz and the equations of motion are

ḣ5(
h

kh8E d~Dnh!einue2 iDnhkuzE~h1Dnh ,x,z!,

~12!

u̇52kuh2
k1

2
~p21kb

2 x2!, ~13!
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ṗ52kb
2x, and ẋ5p, ~14!

wherekh85eKh/4g0
2mc2, andkb is the effective total~natu-

ral and external! focusing strength in both transverse plan
The energy equation~12! and the phase equation~13! gen-
eralize Colson’s pendulum equations@1# to the 3D case, and
the transverse betatron motion is described by Eq.~14! under
the smooth approximation. When only natural undulator
cusing is present,kb5Kku/(2g0), and (p21kb

2 x2) is a con-
stant of motion in the phase equation~13!, as noted by
Scharlemann@9#. However, in many high-gain FELs, exte
nal focusing much stronger than the natural one is requ
to reduce the gain length. In this case, it can be shown@10#
that the same factor (p21kb

2 x2) enters the phase equatio
~13! and is also a constant of motion.

Using the method of integration along the unperturb
trajectory@11#, the continuity equation can be written as t
integral equation

F~z,u,h,x,p!5F02E
0

z

ds(
h

kh8E d~Dnh!einu~0!
e2 iDnhkws

3E~h1Dnh ,x~0!,s!

3
]

]h
F~s,u~0!,h,x~0!,p~0!!, ~15!

whereF0 is the initial electron distribution that includes th
smooth distribution, the shot noise, and any initial dens
modulation, and the unperturbed trajectory is described

u~0!5u1 u̇~s2z!5u1F2kuh2
k1

2
~p21kb

2r 2!G~s2z!,

x~0!5x cos@kb~s2z!#1
p

kb
sin@kb~s2z!#,

p~0!52kbx sin@kb~s2z!#1pcos@kb~s2z!#. ~16!

One important quantity of the system is the Pierce para
eterr @12#, defined through the relationk1n0k1854ku

2r3. It is
then convenient to introduce the following scaled variabl

z̄52rkuz, h̄5
h

r
, n̄5

Dn

2r
,

x̄5xA2k1kur, p̄5pA k1

2kur
, ~17!

as well as the scaled radiation fieldah and the scaled distri
bution functionf:

ah5
2eKh

4g0
2mc2kur

e2 iDnhkuzE~h1Dnh ,x,z!, f 5
2kur2

k1
F.

~18!

Equations~10! and ~15! can be scaled accordingly:
.

-

d

d

y

-

S ]

] z̄
1 i n̄h1

“̄'
2

2ih
D ah

5S Kh

K1
D 2E 2rdu

2p
e2 inuE d2p̄E dh̄ f ~ z̄,u,h̄,x̄,p̄!,

~19!

f 5 f 01E
0

z̄
ds̄(

h
E d~ n̄h!einu~0!

ah~ n̄h ,x̄~0!,s̄!

3
]

]h̄
f ~ s̄,u~0!,h̄,x̄~0!,p̄~0!!. ~20!

Hereu (0)5u1f( s̄2 z̄) is the unperturbed phase,

f5h̄2
p̄21 k̄b

2 x̄2

2
~21!

describes the inhomogeneous effects of the energy sp
and the emittance, andk̄b5kb /(2kur) is the scaled focusing
strength.

III. LINEAR HARMONIC GENERATION

The coupled Maxwell-Klimontovich Eqs.~19! and ~20!
can be solved in perturbation theory. First, one notices th

ãh~u,x̄,z̄!5E dn̄hah~ n̄h ,x̄,z̄!ei n̄h2ru ~22!

is the slowly varying radiation field along the bunch positi
u. The radiation intensityI 1 at the fundamental is expected
reach saturation when@12#

I 1

rI beam
5uã1~u!u2<1, ~23!

where I beam5g0mc3n0 is the peak electron beam intensit
In the small signal regime before saturation, the field am
tudesuãhu<uã1u,1. To the first order in the field amplitudes
we can replacef at the right-hand side of Eq.~20! by the
smooth background distributionf̄ 0 to obtain

f 5 f̄ 01 f̂ 01E
0

z̄
ds̄(

h
E d~ n̄h!einu~0!

ah~ n̄h ,x̄~0!,s̄!

3
]

]h̄
f̄ 0~ s̄,u~0!,h̄,x̄~0!,p̄~0!!, ~24!

where f̂ 0 contains the shot noise and any initial dens
modulation~as in a HGHG FEL!, and is treated as a first
order quantity.

We now assume that the initial electron beam is matc
to the undulator channel and is uniform inu ~this can be
approximately satisfied by a bunch that is very long co
pared to the fundamental radiation wavelength!. Taking f̄ 0

5 f̄ 0(p̄21 k̄b
2 x̄2,h̄) in Eq. ~24! and inserting it into Eq.~19!,

we find that the field at each frequency amplifies its
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through the linear interaction and does not interact with ot
Fourier components. The linear harmonic generation is g
erned by

S ]

] z̄
1 i n̄h1

¹̄'
2

2ih
D ah

L~ n̄h ,x̄,z̄!2S Kh

K1
D 2

3E d2p̄E dh̄E
0

z̄
ds̄eihf~ s̄2 z̄!ah

L~ n̄h ,x̄~0!,s̄!
] f̄ 0

]h̄

5S Kh

K1
D 2E d2p̄E dh̄ f̂ 0,h~ n̄h ,x̄,p̄,h̄ !, ~25!

where f̂ 0,h( n̄h) is the Fourier component off̂ 0 at frequency
detuningn̄h near thehth harmonic. We seek a solution of th
form e2 imhz̄Ah

L( x̄), where the complex growth ratemh and
the transverse mode profileAh

L( x̄) satisfy the dispersion re
lation ~as shown in Appendix A!

S 2 imh1 i n̄h1
“̄'

2

2ih
DAh

L~ x̄!2S Kh

K1
D 2

3E d2p̄E dh̄E
2`

0

dtAh
L~ x̄~0!!ei ~hf2mh!t

] f̄ 0

]h̄
50. ~26!

Here x̄(0)5 x̄ cos(k̄bt)1(p̄/kb)sin(k̄b t). This result general-
izes the dispersion relation for the fundamental freque
(h51) @13,14# to arbitrary harmonics. The 1D, ideal bea
limit of Eq. ~26! ~where all transverse modes degenera!
was studied in Ref.@15#. The complex growth ratemh can be
obtained by variational approximations@14,5# or by a matrix
formulation of Eq.~26! @5#. Among all the transverse mode
the one with the largest imaginary part ofmh is the most
dominant due to exponential growth and is regarded as
guided mode. Using Van Kampen’s normal-mode expans
illustrated in Appendix A, Eq.~25! can be solved for any
given initial condition. In the high-gain limit, we may kee
only the dominant mode and arrive at

ah
L~ n̄h ,x̄,z̄!}e2 imhz̄Ah

L~ x̄!F E d2x̄8Ah
L~ x̄8!a0,h~ n̄h ,x̄8!

1E d2x̄8E d2p̄E dh̄ f̂ 0,h~ n̄h ,x̄8,p̄,h̄ !

3E
2`

0

dtAh
L~ x̄~0!!ei ~hf2mh!tG . ~27!

The first term in the squared bracket describes the proce
coherent amplification~CA! @12#, which starts from a coher
ent input signala0,h with a well-defined frequency detunin
n̄h . The second term describes the process of SASE@16,13#,
which starts from white noise.

In this paper, we adopt the matrix formulation for th
study of both linear and nonlinear harmonic interactio
Following the derivation of Ref.@5#, we introduce the Han-
kel transform pair for the guided mode of thehth harmonic
field
r
v-

y

e
n

of

.

Ah~Q!5E
0

`

RdRJ0~QR!Ah~R!,

Ah~R!5E
0

`

QdQJ0~QR!Ah~Q!, ~28!

whereR5r sx
, and r 5Ax21y2 .Equation~26! can be con-

verted to an integral equation@5#

Ah
L~Q!5E

0

`

Q8dQ8Th~Q,Q8!Ah
L~Q8!, ~29!

with the kernel

Th~Q,Q8!5
h

~mh2 n̄h!2Q2/~2hs̄x
2!

S Kh

K1
D 2

3E
2`

0 tdt

~11 ihk̄b
2 s̄x

2t!2
J0S iQQ8cosk̄bt

11 ihk̄b
2 s̄x

2t
D

3expF2
h2s̄h

2t2

2
2 imht2

~Q21Q* 2!

2~11 ihk̄b
2 s̄x

2t!
G .

~30!

Here the initial electron-beam distribution is assumed to
Gaussian in (x̄,p̄,h̄), with s̄x5sxA2k1kur and s̄h5sh /r
as the scaled rms transverse size and the scaled rms e
spread, respectively. The electron-beam emittance is g
by e5s̄x

2k̄b /k1 . Note that we use slightly different scalin
parameters from Ref.@5#. By discretizing Q and Q8 to
Q1 ,Q2 ,...,QN , Eq. ~29! can be cast into a matrix form

@ I2Th~mh!#Ah
L50, ~31!

where I is the identity matrix, the matrix elementTh
nn8

5Qn8(Qn82Qn821)Th(Qn ,Qn8) ~n and n851,2, . . . ,
N, Q050!, and the vectorAh

L represents the eigenmod
Ah

L(Q) at Q5Q1 ,Q2 ,...,QN . For a given detuningn̄h , the
eigenvalue of the matrix (I2Th) that has the largest Im(mh)
yields the growth rate of the guided mode for each harmo
and the Hankel transform of the corresponding eigenm
yields the transverse profile of the guided mode.

In general, the growth rate of thehth (h.1) harmonic is
much smaller than that of the fundamental frequency
cause the harmonic radiation has lower coupling coeffici
@i.e., (Kh /K1)2,1# and is more sensitive to the warm-bea
effects~energy spread and emittance! due to theh factor in
the exponent of Eq.~26!, especially for the x-ray FEL’s~see
numerical examples in Sec. VI!. Hence the linear gain pro
cess is predominantly the growth of radiation around
fundamental frequency in the exponential growth regime

IV. NONLINEAR HARMONIC INTERACTIONS

When a beam is strongly bunched in the ponderomo
potential formed by the undulator field and the radiation fie
of the fundamental frequency, the bunch spectrum deve
rich harmonic contents. Coherent radiation at the odd h
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monics can be generated in a planar undulator and signifi
power levels for the first few harmonics can be reached
fore the FEL saturates@3,4#. Here we study this process i
detail.

To include nonlinear harmonic interactions, we iterate E
~20! to an arbitrary order inSh*dn̄heinuah5Sheihuãh :
s

ld
o

m

. I
nt
e-

.

f 5 f̄ 01 f ~1!1 f ~2!1¯1 f ~m!1¯ , ~32!

where the first-order distribution is given in Eq.~24! and the
mth order (m.1) distribution function is
f ~m!5E
0

z̄
ds̄1(

h1

E d~ n̄1!ei ~h112rn̄1!u1
~0!

ah1
~ n̄1,x̄1

~0! ,s̄1!
]

]h̄
3¯3E

0

s̄m22
ds̄m21

3 (
hm21

E d~ n̄m21!expi ~hm2112rn̄m21!um21
~0! ahm21

~ n̄m21,x̄m21
~0! ,s̄m21!

]

]h̄

3F f̂ 0~ s̄m21 ,um21
~0! ,h̄,x̄m21

~0! ,p̄m21
~0! !1E

0

s̄m21
ds̄m(

hm

E d~ n̄m!

3ei ~hm12rn̄m!um
~0!

ahm
~ n̄m,x̄m

~0! ,s̄m!
]

]h̄
f̄ 0~ s̄m ,um

~0! ,h̄,x̄m
~0! ,p̄m

~0!!G . ~33!

Here

um
~0!5u1f~ s̄m2 z̄!,

x̄m
~0!5 x̄ cos@ k̄b~ s̄m2 z̄!#1

p̄

k̄b

sin@ k̄b~ s̄m2 z̄!#,

p̄m
~0!52 k̄bx̄ sin@ k̄b~ s̄m2 z̄!#1p̄cos@ k̄b~ s̄m2 z̄!#. ~34!

Inserting Eq.~33! into Eq. ~19! and integrating overu, we obtain

S ]

] z̄
1 i n̄h1

“'
2

2ih Dah5S Kh

K1
D 2E d2p̄E dh̄(

h’ s
E

0

z̄
ds̄1eih1f~ s̄12 z̄!E d~ n̄1!ah1

~ n̄1,x̄1 ,s̄1!
]

]h̄
3¯

3E
0

s̄m22
ds̄m21E d~ n̄m21!ahm21

~ n̄m21,x̄m21 ,s̄m21!
]

]h̄ F f̂ 0,hm
1E

0

s̄m21
ds̄m

3eihmf~ s̄m2 z̄!E d~ n̄m!ahm
~ n̄m,x̄m ,s̄m!

] f̄ 0

]h̄ Gd~2 n̄h1 n̄11¯1 n̄m!, ~35!
ne
e-

be

the
where the sum overhs consists of all harmonic interaction
that satisfyh11¯1hm5h. Among them, the term with
hm5h and all otherh’s equal to zero, gives rise to Eq.~25!.

Let us estimate the relative strengths of harmonic fie
generated from the process of self-amplified spontane
emission. The general solution of Eq.~35! can be written as

ah5ah
L1ah

NL , ~36!

where the linear harmonic fieldah
L is given by the second

term of Eq.~27!, and the nonlinear harmonic fieldah
NL is the

solution due to the nonlinear harmonic interactions. Assu
that u*dn̄heinuahu!u*dn̄1einua1u,1 for uhu.1, we havea1

'a1
L@a1

NL before saturation. Foruhu.1, ah
L does not grow

much from the spontaneous emission as shown in Sec
Thus, the nonlinear interacting terms of Eq.~35! can be sepa-
s
us

e

II.

rated into two groups: those consisting of at least o
ah

L(uhu.1) or f̂ 0,h would generate nonlinear harmonics b
low the level of spontaneous harmonic emissions and can
ignored, and those consisting of interactions amonga1 and
ah

NL(uhu.1) may generate more harmonic radiation than
linear harmonic generation. If we further postulate thatah

NL

is an uhu th order quantity, i.e.,

ah
NL;a1

uhu , for uhu.1, ~37!

then we obtain from Eq.~35! that

ah
NL; (

h11¯1hm5h
a1

uh1u1¯1uhmu . ~38!
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To be consistent with Eq.~37!, we drop higher-order~than
thehth order! terms ofah

NL by restricting the sum in Eq.~38!
to those with 0,h1 ,...,hm<h. Thus, we conclude that th
dominant nonlinear harmonic field is determined by all low
nonlinear harmonic fields as well as the fundamental fiel

For instance, since both the fundamental and the th
harmonic of a SASE FEL start with effective noises on t
order of 1/ANe, we have

ua3
Lu;

1

ANe

eIm~m3!z̄, ua3
NLu;ua1u3;S 1

ANe

eIm~m1!z̄D 3

.

If Im(m3)!Im(m1), then

a3'H a3
L when z̄,

2

3
z̄sat

a3
NL when z̄.

2

3
z̄sat

~39!

where z̄sat;(ln Ne)/2 Im(m1) is the saturation length. Thus
when z̄.(2/3)z̄sat, the third-harmonic radiation is com
pletely driven by the third power of the fundamental rad
tion, with a characteristic growth rate three times that of
m
w
c

ed
r

d

-
e

fundamental. At the fifth harmonic, the leading nonline
terms area1

2a3
NL anda1

5. Sincea3
NL;a1

3, both terms ofa5
NL

are of the same order asa1
5 and are the dominant componen

for a5 after z̄.(4/5)z̄sat in a SASE FEL. For a high-gain FEL
where a bunch density modulation or a seed laser at
fundamental wavelength is present, the nonlinear interact
become dominant over the linear interaction for higher h
monics at a much earlier stage of the exponential gro
regime. Hence we come to the conclusion that the domin
nonlinear terms forah

NL are eventually of the same order a
a1

uhu for uhu.1, with a growth rate given byuhu Im(m1). Such
a growth rate scaling was first pointed out using a 1D mo
@3,17# and was observed up to the ninth harmonic using
three-dimensional simulation code@4#. Here we present a 3D
analysis for this scaling by taking into account all possib
harmonic interactions. In passing, we note that this pertur
tion analysis is not very accurate whenz̄ is too close toz̄sat.

V. THIRD-HARMONIC GENERATION

In this section, we calculate explicitly the nonlinear ha
monic generation fora3

NL . The governing equation is ob
tained by settingh53 andh15h25h351 in Eq. ~35!:
S ]

] z̄
1 i n̄31

“̄'
2

6i
D a3

NL~ n̄3 ,x̄,z̄!2S K3

K1
D 2E d2p̄E dh̄E

0

z̄
ds̄1ei3f~ s̄12 z̄!a3

NL~ n̄3 ,x̄1
~0! ,s̄1!

] f̄ 0

]h̄

5S K3

K1
D 2E d2p̄E dh̄E

0

z̄
ds̄1eif~ s̄12 z̄!E d~ n̄1a!a1~ n̄1a ,x̄1

~0! ,s̄1!
]

]h̄

3E
0

s̄1
ds̄2eif~ s̄22 z̄!E d~ n̄1b!a1~ n̄1b ,x̄2

~0! ,s̄2!
]

]h̄ E
0

s̄2
ds̄3eif~ s̄32 z̄!

3E d~ n̄1g!a1~ n̄1g ,x̄3
~0! ,s̄3!d~2 n̄31 n̄1a1 n̄1b1 n̄1g!

] f̄ 0

]h̄
, ~40!
s,

ing
where the fundamental field is solved in Eq.~27! as

a1~ n̄1 ,x̄,z̄!}e2 im1z̄A1~ x̄!F E d2x̄8A1~ x̄8!a0,1~ n̄1 ,x̄8!

1E d2x̄8E d2p̄E dh̄ f̂ 0,1~ n̄1 ,x̄8,p̄,h̄ !

3E
2`

0

dtA1~ x̄~0!!ei ~f2m1!tG . ~41!

Thus, the properties of the third nonlinear harmonic are co
pletely specified by those of the fundamental. In the follo
ing, we discuss these properties for both coherent amplifi
tion and self-amplified spontaneous emission.

A. Coherent amplification

For FEL’s that start with a coherent input~including the
HGHG FEL’s!, the fundamental radiation has a well-defin
-
-
a-

frequency that is determined by the initial condition. Thu
we can drop the frequency dependence ofa1 anda3

NL in Eq.
~40!. Assuming that the FEL operates at the optimal detun
n̄0 for the fundamental field~with a growth ratem0 that has
the maximum imaginary part!, we have n̄1a5 n̄1b5 n̄1g
5 n̄0 and n̄353n̄0 . Equation~40! becomes

S ]

] z̄
13i n̄01

“̄'
2

6i
D a3

NL~ x̄,z̄!2S K3

K1
D 2E d2p̄E dh̄

3E
0

z̄
ds̄1e3if~ s̄12 z̄!a3

NL~ x̄1
~0! ,s̄1!

] f̄ 0

]h̄

5S K3

K1
D 2E d2p̄E dh̄E

0

z̄
ds̄1eif~ s̄12 z̄!a1~ x̄1

~0! ,s̄1!

3
]

]h̄ E
0

s̄1
ds̄23eif~ s̄22 z̄!a1~ x̄2

~0! ,s̄2!
]

]h̄
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3E
0

s̄2
ds̄3eif~ s̄32 z̄!a1~ x̄3

~0! ,s̄3!
] f̄ 0

]h̄
.

In view of Eq. ~41!, we write a1( x̄,z̄)5e2 im0z̄A1( x̄),

whereA1'A0e2w1x̄2/s̄x
2

is the guided mode using the Gaus
ian approximation@5#, andA0 is the appropriate normaliza
tion coefficient. Thus, we can write the third nonlinear h
monic a3

NL5e23im0z̄A3
NL with the transverse profileA3

NL by:

F23i ~m02 n̄0!1
“̄'

2

6i
GA3

NL~ x̄!2S K3

K1
D 2E d2p̄E dh̄

3E
2`

0

dt1A3
NL~ x̄1

~0!!e3i ~f2m0!t1
] f̄ 0

]h̄

5S K3

K1
D 2E d2p̄E dh̄E

2`

0

dt1e3i ~f2m0!t1A1~ x̄1
~0!!

]

]h̄

3E
2`

0

dt23e2i ~f2m0!t2A1~ x̄2
~0!!

]

]h̄

3E
2`

0

dt3ei ~f2m0!t3A1~ x̄3
~0!!

] f̄ 0

]h̄
, ~43!

wheretm5 s̄m2 s̄m21 for m51,2,3 ands̄05 z̄. We have ex-
tended the lower limit of the integral*dtm to 2` due to the
exponential growth of the field amplitudes. The left-ha
side of Eq.~43! is the same as Eq.~26! for h53, except we
replacem3 by 3m0 and n̄3 by 3n̄0 . Following the matrix
formulation for the left-hand side of Eq.~43! and carrying
out *d2p̄*dh̄ for the right-hand side, we arrive at

@ I2T3~3m0!#A3
NL5S K3

K1
D 2

A0
3H ~44!

in the Hankel transformedQ space, where thenth element of
the vectorH is

Hn5
21/w1

2

12~m02 n̄0!22Qn
2/~3s̄x

2!
E

2`

0

dt1E
2`

0

dt2E
2`

0

dt3

3
3t1~3t112t2!~3t112t21t3!

U

3expF2
s̄h

2

2
~3t112t21t3!2
-

2 im0~3t112t21t3!2
Qn

2

4w1SG , ~45!

and

S5
U

V1(m51,2,3sin2~ k̄b( l 51
m t l !

,

U5F (
m51

3

sin2S k̄b(
l 51

m

t l D GF (
m51

3

cos2S k̄b(
l 51

m

t l D G
2F (

m51

3

sinS k̄b(
l 51

m

t l D cosS k̄b(
l 51

m

t l D G2

1V213V,

V5
1

2w1
1

i

2w1
k̄b

2 s̄x
2~3t112t21t3!. ~46!

We can ignoreT3(3m0) with respect to the identity matrix
because the linear harmonic generation is much weaker c
pared to the nonlinear generation. The transverse profile
the third nonlinear harmonic is obtained after Hankel tra
forming the solution of Eq.~44! and is approximately Gauss
ian in R, i.e.,

A3
NL~R!'S K3

K1
D 2

A0
3E QdQJ0~QR!H~Q!

'S K3

K1
DH0A0

3e2w3R2
. ~47!

Thus, the third nonlinear harmonic is also transversely
herent. In general, the transverse mode size of the third n
linear harmonic is always narrower than that of the fund
mental due to the nonlinear generation mechanism~see
numerical examples with Figs. 1 and 3 in Sec. VI!.

B. Self-amplified spontaneous emission

For a SASE FEL, the fundamental radiation starts with
white-noise spectrum and has a finite gain bandwidth. I
convenient to solve for the slowly varying electric fie

ã3( ū)5*dn̄3ei n̄3ūa3( n̄3) along the scaled bunch positionū
52ru and write Eq.~40! as
S ]

] z̄
1

]

]ū
1

“̄'
2

6i
D ã3

NL2S K3

K1
D 2E d2p̄E dh̄E

0

z̄
ds̄1e3if~ s̄12 z̄!ã3

NL~ ū,x̄1
~0! ,s̄1!

] f̄ 0

]h̄

5S K3

K1
D 2E d2p̄E dh̄E

0

z̄
ds̄1eif~ s̄12 z̄!ã1~ ū,x̄1

~0! ,s̄1!
]

]h̄
E

0

s̄1
ds̄2eif~ s̄22 z̄!

3ã1~ ū,x̄2
~0! ,s̄2!

]

]h̄
E

0

s̄2
ds̄3eif~ s̄32 z̄!ã1~ ū,x̄3

~0! ,s̄3!
] f 0

]h̄
. ~48!
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In the absence of an external signal, we drop the first te
in Eq. ~41! and perform the Fourier transformation of th
second term. In order to estimate the average power of
third nonlinear harmonic, we make the following simplifyin
assumption aboutã1 in the exponential regime.

ã1~ ū,x̄,z̄!'e2 im0z̄1 i n̄0ūA0e2w1x̄2/s̄x
2

(
j 51

N

e2 iu jg1~ ū2 ū j ,z̄!.

~49!

Hereg1( ū2 ū j ,z̄) is the longitudinal Green’s function whos
variation in z̄ and ū is much slower than the exponenti
variation in Eq.~49! ~see Appendix B for more discussion!.

Writing ã3
NL5e23im0z̄13i n̄0ūÃ3

NL( x̄,z̄,ū) and assuming tha

Ã3
NL depends only weakly onz̄ andū, the equation forÃ3

NL is
then very similar to Eq.~43!. Following the derivation of
Sec. V A, we obtain

Ã3
NL'S K3

K1
D 2

A0
3G1

3E QdQJ0~QR!H~Q!

'S K3

K1
DH0A0

3e2w3R2
G1

3, ~50!

whereG15S j 51
N e2 iu jg1( ū2 ū j ,z̄) can be regarded as a ra

dom phasor sum andH(Q) is described in Eq.~45!. Hence,
the third nonlinear harmonic radiation is transversely coh
ent and longitudinally chaotic, similar to the fundamen
radiation in SASE FEL. However, the spikes of the th
harmonic become more pronounced due to the third-po
dependence on the random variableG1 , implying higher av-
erage value~than the corresponding steady-state case! and
more shot-to-shot fluctuations for the total radiation ener
The statistical properties of the third nonlinear harmonic
diation are discussed in Appendix B.

In both cases, since the instantaneous third-harmonic
diation intensity is

I 35rI beamUS K1

K3
D ã3U2

5rI beame
6 Im~m0!z̄S K1

K3
D 2

uÃ3
NL~R!u2,

~51!

the average power of the third-harmonic radiation is given

P3
NL5E dxdŷ I 3&

5e6 Im~m0!z̄rI beam2psx
2S K1

K3
D 2E RdR̂ uÃ3

NL~R!u&

5rPbeame
6 Im~m0!z̄

A0
6uH0u2

4w3r
3H 1 CA,

^G1
3~G1

3!* & SASE,

~52!

where Pbeam52psx
2I beam is the total electron-beam powe

andw3r is the real part ofw3 . Similarly, we write the fun-
damental power as

P15rPbeame
2 Im~m0!z̄

A0
2

4w1r
H 1 CA,

^G1G1* & SASE,
~53!
m

he

r-
l

er

.
-
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wherew1r is again the real part ofw1 . Using Eqs.~53! and
~B8!, we simplify Eq.~52! as

S P3
NL

rPbeam
D'uH0u2

16w1r
3

w3r
S P1

rPbeam
D 3

3H 1 CA,

6 SASE,
~54!

VI. NUMERICAL EXAMPLES

In this section, we illustrate the analytical results of t
previous sections using two current high-gain FEL projec
The first example is motivated by Ref.@4#, where the steady-
state simulation of up to the ninth harmonic is performed
the low-energy undulator test line~LEUTL! FEL at the ad-
vanced photon source@18#. The nominal parameters for th
LEUTL FEL are listed in Table I, from which we finds̄x

50.56, s̄h50.25, andk̄b50.46 for our scaled parameter
Using the matrix formulation of Sec. III, the complex grow
rates of the fundamental and the third linear harmonic
m0520.4210.5i ~at the optimal detuningn̄0520.42! and
(m3)0520.8710.16i @at (n̄3)0520.87#, and the transverse
mode calculation yields the guided mode withw150.16
20.093i . Thus, the linear part of the third-harmonic radi
tion grows much slower than the fundamental radiatio
Nevertheless, the third nonlinear harmonic grows three tim
as fast as the fundamental and can dominate over the li
part. In order to compare with Ref.@4#, which starts the
MEDUSA simulation using a seed laser at the fundamental,
employ the formulas of coherent amplification for the no
linear harmonic calculation even though the LEUTL expe
ment starts from shot noise. We find thatw3r50.39 and
uH0u251.4 and plot the transverse profiles of the third no
linear harmonic, the fundamental, and the electron beam
Fig. 1. Note that the third-harmonic radiation is guided in t
exponential regime, with a smaller spot size than that of
fundamental due to the nonlinear generation mechani
This behavior is different from theMEDUSA simulation @4#
that shows the spot sizes of higher harmonics expand
tially and focus rapidly in the latter stage of the interactio
In the exponential growth regime, the third nonlinear h
monic powerP3

NL is obtained from Eq.~54!:

P3
NL

rPbeam
50.24S P1

rPbeam
D 3

for LEUTL FEL ~steady-state mode!, ~55!

where rPbeam5130 MW. Using the fitting formula of the
saturation powerPsat'2.1@ Im(m0)#

2rPbeam570 MW for the
fundamental@19# and assuming that Eq.~55! is valid till
P15Psat/2535 MW, we estimate that the third-harmon
power can reach the 600 kW level. TheMEDUSA simulation
@4# shows the saturated third-harmonic power at 2.67 M
In Fig. 2, we plot the third-harmonic power as a function
the undulator distancez, calculated from Eq.~55! with P1
given by theMEDUSA simulation. It agrees with theMEDUSA

third-harmonic power level.
In the second example, we consider the proposed x

FEL linac coherent light source~LCLS! at Stanford Linear
Accelerator Center@20#. Using the current LCLS design pa
rameters in Table I, we haves̄x52.8, s̄h50.45, andk̄b
50.29. The fundamental guided mode has a complex gro
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TABLE I. Third-harmonic computation for the LEUTL FEL and the LCLS project.

LEUTL ~steady state! LCLS (l r51.5 Å! LCLS (l r54.5 Å)
e-beam and undulator

energy 220 MeV 14.4 GeV 8.3 GeV
peak current 150 A 3400 A 3400 A
normalized emittance 5mm 1.5mm 3 mm
energy spread 0.1% 0.02% 0.02%
average beta function 1.5 m 18 m 18 m
undulator period 3.3 cm 3 cm 3 cm
undulator strength 3.1 3.71 3.71
fundamental wavelength 518 nm 1.5 Å 4.5 Å

Calculated FEL properties
fundamental power gain length 0.67 m 6.1 m 5.0 m
fundamental saturation power 70 MW 8 GW 7 GW
third-harmonic power (P3)a 600 kW 15 MW 40 MW
third-harmonic bunching (b3)b 0.3 0.02 0.04

Simulation comparison
MEDUSA saturatedP3 2.67 MW
GINGER saturatedb3 0.2 0.03 0.05

aEvaluated when the fundamental reaches one-half of the saturation power.
bSame as a.
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rate m0521.210.42i and a mode profile determined b
w150.6420.50i at the optimal detuningn̄0521.0, consis-
tent with the result of Ref.@5#. However, the linear growth
rate of the third harmonic is almost zero at any detun
because the emittance and the energy spread of the be
too large at this wavelength~0.5 Å! to have any linear am
plification. Thus, the third-harmonic radiation is large
spontaneous in the first two-thirds of the full saturati
length, until the nonlinear harmonic generation becom
prominent. The transverse profile of the third nonlinear h
monic is obtained from Eq.~47! and is shown in Fig. 3, with
w3r51.4 anduH0u256.331023. In comparison, Fig. 3 also
shows the electron-beam profile and the fundamental ra
tion mode in the exponential growth regime. Note that
spot size of the fundamental radiation is smaller than
electron-beam size because the effect of diffraction is q
small in the x-ray wavelength~in contrast to Fig. 1, the
LEUTL case in the visible wavelength!, and the spot size o

FIG. 1. Transverse profiles of the third harmonic (I 3), the fun-
damental radiation (I 1), and the electron beam (I e) as functions of
the radius in units of electron-beam size, using the LEUTL F
parameters from Table I.
g
is

s
r-

a-
e
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te

the third nonlinear harmonic is smaller than that of the fu
damental. In view of the so-called diffraction-limited criter
e,l r /4p to generate transversely coherent radiation
wavelengthl r , the requirement on the emittancee is further
violated by a factor of 3 at the third-harmonic waveleng
@21#, in addition to a factor of 4.5 at the fundamental wav
length due to the optical guiding of the electron beam@5#.
Using Eq. ~54! for SASE, we obtain the third-harmoni
powerP3

NL from the nonlinear harmonic generation

P3
NL

rPbeam
50.11S P1

rPbeam
D 3

~56!

for LCLS. Here rPbeam522 GW with the current LCLS
parameters. We takeP15Psat/2'4 GW before the FEL satu
ration and estimate the third-harmonic power to be 15 M
We also calculate the third-harmonic bunching parame

FIG. 2. Comparison of the calculated third-harmonic power a
the MEDUSA steady-state simulation for the LEUTL FEL. The sol
curve is calculated from Eq.~55! using the fundamental power ob
tained fromMEDUSA ~the dashed curve!. The dotted curve is the
third-harmonic power from the same simulation.
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~defined in Appendix C! according to Eq.~C4! and compare
with theGINGERsimulation results in Fig. 4 for a steady-sta
GINGER run ~coherent amplification! and Fig. 5 for a SASE
run. Reasonable agreement is found in the exponen
growth regime. In addition, as shown in Fig. 5, there is
most no linear growth of the third harmonic until the nonli
ear harmonic generation becomes prominent above the n
level.

As another illustration, suppose we reduce the requ
ments on electron-beam energy and normalized emittanc
LCLS to 8.3 GeV and 3p mm mrad, respectively@22#. If we
keep the same undulator parameters and other beam pa
eters~see Table I!, the fundamental radiation wavelength b
comes 4.5 Å. A similar calculation as above shows that
third-harmonic power at 1.5 Å can reach 40 MW when t
power of the fundamental is one-half of the saturation pow
Psat57 GW. The peak brightness of this harmonic radiati
is about 231030photons/~s mm2 mrad2).

VII. CONCLUSION

In summary, both the linear and the nonlinear harmo
generation in a high-gain FEL are analyzed in perturbat

FIG. 3. Transverse profiles of the third harmonic (I 3), the fun-
damental radiation (I 1), and the electron beam (I e) as functions of
the radius in units of electron-beam size, using the LCLSl r

51.5 Å) parameters.

FIG. 4. Comparison of the calculated third-harmonic bunch
and theGINGER steady-state simulation for LCLS. The solid curve
calculated from Eq.~C4! using the LCLS (l r51.5 Å) parameters
and the fundamental power obtained from a single-frequency~opti-
mal detuning! GINGER run. The dashed curve is the third-harmon
bunching output of the same run.
ial
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theory, including the effects due to energy spread, emittan
and betatron focusing of the electron beams, as well as
diffraction and optical guiding of the radiation field. Drive
by the third power of the radiation field in the fundament
the third nonlinear harmonic grows three times faster,
transversely coherent~with a smaller spot size!, and has a
significant power level for the LEUTL FEL and the LCL
project. Measurement of these nonlinear harmonics at
ongoing SASE FEL experiment@18# at Argonne National
Laboratory and the HGHG experiment@23# at Brookhaven
National Laboratory is planned@24#. Practical effects, such
as undulator separation, misalignment, and magnetic-field
rors to these nonlinear harmonics, are currently under stu
As pointed out in Refs.@3,4# and fully analyzed here, the
generation of nonlinear higher harmonics could be usefu
extending the short-wavelength reach of a high-gain FEL
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APPENDIX A: VAN KAMPEN’S NORMAL MODE
EXPANSION

We illustrate Van Kampen’s normal-mode expansion@25#
by solving the initial value problem of the fundamental r
diation field that is initiated by an external signal or by sh
noise. This extends the treatment of Ref.@13# to the electron
beam with finite emittance. First, we introduce the state v
tor

g

FIG. 5. Comparison of the calculated third-harmonic bunch
and theGINGER SASE simulation for LCLS. The solid curve i
calculated from Eq.~C4! using the LCLS (l r51.5 Å) parameters
and the fundamental power obtained fromGINGER SASE run. The
dashed curve is the third-harmonic bunching output of the sa
run.
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F5S an~ x̄,z̄!

f n~ x̄,p̄,h̄,z̄D[S a1~ n̄1 ,x̄,z̄!

E 2rdu

2p
e2 inu f ~ x̄,p̂,h̄,u,z̄! D ,

~A1!

where f n satisfies the linearized Vlasov equation

] f n

] z̄
1 inf f n1xG

] f n

] x̄
1pG

] f n

]p̄
2an

] f̄ 0

]h̄
50, ~A2!

and f̄ 0(p̄21 k̄b
2 x̄2,h̄) is the smooth background distributio

of a matched, coasting beam. Combining Eq.~A2! with the
scaled Maxwell Eq.~19!, one can write

S ]

] z̄
2 iM DF50, ~A3!

where
ve

r

o

d

MF( z̄)5S S 2 n̄11
“̄'

2

2 Dan2 i E d2p̄E dh̄ f n

2 ian

] f̄ 0

]h̄
1F2nf1 i S xG

]

] x̄
1pG

]

]p̄D G f n

D .

~A4!

The scalar product of two state vectors is defined by

~F1 ,F2![E d2x̄a1na2n1E d2x̄E d2p̄E dh̄ f 1n f 2n .

~A5!

Let us assume the solution of the form

e2 im z̄5e2 im z̄S A~ x̄!

F~ x̄,p̄,h̄ ! D . ~A6!

Equation~A3! becomes the eigenvalue equation:
~mn1M !Cn50, or S mnAn1S 2 n̄11
“̄'

2

2 DAn2 i E d2p̄E dh̄Fn

mnFn2 iAn

] f̄ 0

]h̄
1F2nf1 i S xG

]

] x̄
1pG

]

]p̄D GFn

D 50. ~A7!
et

of

e
tate
Heren indicates a discrete set of eigenvalues and eigen
tors. The second row of Eq.~A7! can be integrated to give

Fn5
] f̄ 0

]h̄ E
2`

0

dtAn~ x̄~0!!ei ~nf2mn!t, ~A8!

where x̄(0)5 x̄ cosk̄b t1(p̄/kb)sink̄bt. Substituting this into
the first row of Eq.~A7!, we obtain the mode equation fo
the fundamental radiation

S 2 imn1 i n̄11
“̄'

2

2i DAn~ x̄!

2E d2p̄E dh̄E
2`

0

dtAn~ x̄~0!!ei ~nf2mn!t
d f̄0

dh̄
50.

~A9!

One can solve the mode equation numerically~as illustrated
in Sec. III! to obtain the eigenvaluemn and the mode func-
tion An . F n is then determined from Eq.~A8!.

To form the orthogonal basis of these eigenvectors, c
sider the adjoint eigenvalue equation

~mn
†1M†!Cn

†50. ~A10!

Here mn
† and Cn

†5(An
† ,Fn

†) are the adjoint eigenvalues an

eigenvectors of the adjoint operatorM̃ , defined through

~M†Cn
† ,F!5~Cn

† ,MF!. ~A11!

This leads to
c-

n-

M†Cn
†5S S 2 n̄11

“̄'
2

2 DAn
†2 i E d2p̄E dh̄

] f̄ 0

]h̄
Fn

†

2 iAn
†1F2nf1 i S xG

]

] x̄
1pG

]

]p̄D GFn
† D .

~A12!

Putting this into Eq.~A10! and solving forFn
† and An

† , we
find that

Fn
†5E

2`

0

dtAn
†~ x̄~0!!ei ~nf2mn!t, ~A13!

and thatAn
† satisfies the same mode equation as Eq.~A9!.

Hence we setAn
†5An andmn

†5mn .
By virtue of Eq.~A11!, one immediately obtains

~mn2mm!~Cm
† ,Cn!5~Cm

† ,MCn!2~M†Cm
† ,Cn!50.

~A14!

If these normal modes are not degenerate, i.e.,mnÞmm for
any nÞm, the Van Kampen orthogonality for a discrete s
of eigenvectors follows@25#:

~Cm
† ,Cn!5dm,n~Cn

† ,Cn!. ~A15!

Similarly, one can have orthogonality for a continuous set
eigenvectors using the Diracd function instead of the Kro-
necker delta functiondm,n @25#. Furthermore, assuming th
set of eigenvectors is complete, we can expand any s
vectorF as
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F~ z̄!5(
n

e2 imnz̄CnCn5(
n

e2 imnz̄
@Cn

† ,F~0!#

~Cn
† ,Cn!

Cn .

~A16!

Here the initial state vectorF~0! consists of the externa
signala0,n and thenth Fourier component of the shot nois
f̂ 0,n . Thus, we have

@Cn
† ,F~0!#5E d2x̄a0,n~ x̄!An~ x̄!

1E d2x̄E d2p̄E dh̄ f̂ 0,n~ x̄,p̄,h̄ !

3E
2`

0

dtAn~ x̄~0!!ei ~nf2mn!t, ~A17!

and

~Cn
† ,Cn!5E d2x̄An

2~ x̄!1E d2x̄E d2p̄E dh̄
] f̄ 0

]h̄

3F E
2`

0

dtAn~ x̄~0!!ei ~nf2mn!tG2

. ~A18!

After the completion of this paper, we heard a talk by M. X
@26#, who has independently obtained these results by
equivalent method.

APPENDIX B: STATISTICAL PROPERTIES OF THE
THIRD NONLINEAR HARMONIC RADIATION

IN SELF-AMPLIFIED SPONTANEOUS EMISSION

In this appendix, we study the statistical properties of
third nonlinear harmonic radiation in SAFE. The tempo
structure of the fundamental radiation of SASE is essenti
chaotic and has been discussed in Refs.@27# and@28#. For a
monochromatic beam in the one-dimensional limit, the r
dom distribution of wave packets is

G1~ ū,z̄!5(
j 51

Ne

e2 iu jg1~ ū2 ū j ,z!

5
G0

Az̄
(
j 51

Ne

e2 iu j expF 2S ū2 ū j1
2

3
z̄D 2

4s
ū

2
~ z̄!

S 12
i

)
D G ,

~B1!

whereū52ru andsū5( z̄/18))1/2 is the coherence lengt
in units of l r /(4pr). Sincer!1, the coherence length i
normally much larger than the fundamental radiation wa
lengthl r in the exponential regime.G1 is a random phaso
sum of many Gaussian wave packets and its amplitude o
the negative exponential probability@29#
n

e
l
ly

-

-

ys

P~ uG1u!5
2uG1u

Ī 1

expS 2
uG1u2

Ī 1
D , ~B2!

where the average radiation ‘‘intensity’’ is

Ī 15^G1G1* &5
G0

Az̄

Ne

ūb

E
2 ūb/2

ūb/2
dq expS 2gc2

2s
ū

2 D
5

G0

Az̄

Ne

ūb

A2psū ~B3!

for a flat-top bunch with scaled bunch lengthūb@sū . The
average value of thenth momentuG1un can be calculated a

^uG1un&5E
0

`

uG1un
2uG1u

Ī 1

expS 2
uG1u2

Ī 1
D duG1u

5GS n

2
11D Ī 1

n/2 , ~B4!

whereG(x) is the Euler gamma function.
The total radiation ‘‘energy’’ is integrated along the pul

and is given byW15* Ī 1( ū)dū5 Ī 1ūb for the flat-top bunch.
The variance of the radiation energy is

sW1

2 5E
2 ūb/2

ūb/2
dūE

2 ūb/2

ūb/2
dū8^ Ī 1~ ū ! Ī 1* ~ ū8!&2W1

2

5 ūbĪ 1
2E

2 ūb/2

ūb/2
dqugG1

~q!u2. ~B5!

Here we have used the moment theorem for the comp
Gaussian random variables@29# in deriving the last expres
sion, andgG1

is known to be the complex degree of cohe
ence of the light@29#, i.e.,

ugG1
~ ū2 ū8!u5

u^G1~ ū !G1* ~ ū8!&u

^uG1~ ū !u2&
5expS 2q2

8s
ū

2 D .

~B6!

Thus, the rms fluctuation for the fundamental radiation e
ergy is

AW1
2

sW1

2 'S ūb

2Apsū

D 1/2

[AMc, ~B7!

where Mc is roughly the number of coherent modes in
bunch.

From Eq.~50!, the temporal structure of the third nonlin
ear harmonic is approximately governed byG1

3. We can ob-
tain the ‘‘intensity’’ of the third nonlinear harmonic by usin
Eq. ~B4! for n56:

Ī 35^G1
3~G1* !3&5^uG1u6&56 Ī 1

3. ~B8!
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The third-harmonic energy is integrated along the pulse
is W35 Ī 3ūb . Following the derivation for fundamental ra
diation, the variance of the third-harmonic energy is

sW3

2 5E
2 ūb/2

ūb/2
dūE

2 ūb/2

ūb/2
dū8^ Ī 3~ ū ! Ī 3* ~ ū8!&2W3

2

5
W3

2

ūb

E
2 ūb/2

ūb/2
dq@9ugG1

~q!u219ugG1
~q!u41ugG1

~q!u6#.

~B9!

Using Eq.~B6!, we obtain the rms fluctuation for the third
harmonic energy

AW3
2

sW3

2 'F S 91
9

&
1

1

)
D 21

ūb

2Apsū

G 1/2

'
AMc

4
.

~B10!

Hence, the third nonlinear harmonic signal is about fo
times more noisy than the fundamental in this sense.

APPENDIX C: BUNCHING PARAMETER

In FEL simulation programs such asGINGER @30#, a
bunching parameter is used to indicate the level of the
crobunching due to the FEL interaction. For simulations t
keep track ofNs independent beam slices~of length l r!, a
natural definition would be

bh5u^e2 ihu j&u

5U E dx̄2

2ps̄x
2 E dp̄2E dh̄E

0

2pNs du

2pNs
e2 ihu f ~ z̄,u,h̄,x̄,p̄!U

,1. ~C1!

This is indeed the definition for the third-harmonic bunchi
in GINGER @31#, but the fundamental bunching parameter
defined with respect to the fundamental field phasec, i.e.,
b15u^e2 i (u1c)&u. From Sec. IV and V, we know the dom
nant component in the distribution function that drives t
third-harmonic bunching is
h-

n

-
00
d

r

i-
t

e3iuE
0

z̄
ds̄1eif~ s̄12 z̄!ã1~ ū,x̄1

~0! ,s̄1!
]

]h̄ E
0

s̄1
ds̄2eif~ s̄22 z̄!

3ã1~ ū,x̄2
~0! ,s̄2!

]

]h̄ E
0

s̄2
ds̄3eif~ s̄32 z̄!~ ū,x̄3

~0! ,s̄3!
] f 0

]h̄
.

~C2!

For CA, ã1 is constant inū; for SASE, ã1 is approximated
by Eq. ~49!. In both cases, we can carry out the integrals
x̄,p̄,h̄ as before and obtain

b35e3 Im~m0!z̄A0
3U E

2`

0

dt1E
2`

0

dt2E
2`

0

dt3

3
3t1~3t112t2!~3t112t21t3!

4w1
2U

3expF2
s̄h

2

2
~3t112t21t3!22 im0~3t112t21t3!GU

3H 1 CA,

^uG1
3u& SASE,

~C3!

whereU is defined in Eq.~46!, and G1 is the longitudinal
random phasor sum. Using the relation for the fundame
radiation power and Eq.~B4! for n53, we can write the
third-harmonic bunching as

b358w1r
3/2S P1

rPbeam
D 3/2U E

2`

0

dt1E
2`

0

dt2E
2`

0

dt3

3
3t1~3t112t2!~3t112t21t3!

4w1
2U

3expF2
s̄h

2

2
~3t112t21t3!22 im0~3t112t21t3!GU

3H 1 CA,

1.3 SASE.
~C4!
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